1.1 Электрический заряд

Если два проводника имеют такую форму, что создаваемое ими электрическое поле сосредоточено в ограниченной области пространства, то образованная ими система носит название конденсатора, а сами проводники называют обкладками конденсатора.

Сферический конденсатор. Два проводника, имеющие форму концентрических сфер с радиусами R1 и R2 (R2 > R1), образуют сферический конденсатор. Используя теорему Гаусса, легко показать, что электрическое поле существует только в пространстве между сферами. Напряженность этого поля

,

где q - электрический заряд внутренней сферы; - относительная диэлектрическая проницаемость среды, заполняющей пространство между обкладками; r - расстояние от центра сфер, причем R1 r R2. Разность потенциалов между обкладками

и емкость сферического конденсатора

.

Цилиндрический конденсатор представляет собой два проводящих коаксиальных цилиндра радиусами R1 и R2 (R2 > R1). Пренебрегая краевыми эффектами на торцах цилиндров и считая, что пространство между обкладками заполнено диэлектрической средой с относительной проницаемостью , напряженность поля внутри конденсатора можно найти по формуле:

,

где q - заряд внутреннего цилиндра; h - высота цилиндров (обкладок); r - расстояние от оси цилиндров. Соответственно, разность потенциалов между обкладками цилиндрического конденсатора и его емкость есть



Плоский конденсатор. Две плоские параллельные пластины одинаковой площади S, расположенные на расстоянии d друг от друга, образуют плоский конденсатор. Если пространство между пластинами заполнено средой с относительной диэлектрической проницаемостью , то при сообщении им заряда q напряженность электрического поля между пластинами равна, разность потенциалов равна . Таким образом, емкость плоского конденсатора.

Последовательное и параллельное соединение конденсаторов. При последовательном соединении n конденсаторов суммарная емкость системы равна

Параллельное соединение n конденсаторов образует систему, электроемкость которой можно вычислить следующим образом:


Вопросы

1) Приведите обоснования формул, по которым вычисляется емкость при последовательном и параллельном соединении конденсаторов
2) Как изменится емкость сферического конденсатора, если внутреннюю сферу немного сместить от центра

наверх

Хостинг от uCoz